Adaptive computation of solutions to semilinear parabolic equations with dynamical boundary conditions
نویسنده
چکیده
Адаптивно пресмятане на решенията на полулинейни параболични уравнения с динамични гранични условия: В настоящата статия са предложени адаптивни методи за числено пресмятане на избухващите решения на полулинейни параболични задачи с динамични гранични условия. Алгоритмите са базирани на стандартни диференчни схеми, построени върху специални, неравномерни по пространството и времето мрежи. Числено са изследвани: скоростта на сходимост, ефективността на методите и скоростта на избухване. Резултатите са онагледени с таблици и графики. Ключови думи: Избухващи решения, време на избухване, динамични гранични условия, крайни диференчни схеми, множество от точки на избухване, скорост на избухване.
منابع مشابه
On the Normal Semilinear Parabolic Equations Corresponding to 3D Navier-Stokes System
The semilinear normal parabolic equations corresponding to 3D Navier-Stokes system have been derived. The explicit formula for solution of normal parabolic equations with periodic boundary conditions has been obtained. It was shown that phase space of corresponding dynamical system consists of the set of stability (where solutions tends to zero as time t → ∞), the set of explosions (where solut...
متن کاملStationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions
Unspecified Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: http://doi.org/10.5167/uzh-22758 Originally published at: Chipot, M; Fila, M; Quittner, P (1991). Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions. Acta Mathematica Universitatis Comenianae. New Series, 60(1):35-1...
متن کاملBlow - up behaviors for semilinear parabolic systems coupled in equations and boundary conditions ✩
This paper concerns with blow-up behaviors for semilinear parabolic systems coupled in equations and boundary conditions in half space. We establish the rate estimates for blow-up solutions and prove that the blow-up set is ∂R+ under proper conditions on initial data. Furthermore, for N = 1, more complete conclusions about such two topics are given. 2004 Elsevier Inc. All rights reserved.
متن کاملUnboundedness of classical global solutions of parabolic equations with forcing terms
Semilinear parabolic equations with forcing terms are discussed, and sufficient conditions for every classical global solution of boundary value problems to be unbounded on a cylindrical domain in R. The approach used is to reduce the multi-dimensional problems to one-dimensional problems for first-order ordinary differential inequalities.
متن کاملVerified Computations for Solutions to Semilinear Parabolic Equations Using the Evolution Operator
This article presents a theorem for guaranteeing existence of a solution for an initial-boundary value problem of semilinear parabolic equations. The sufficient condition of our main theorem is derived by a fixed-point formulation using the evolution operator. We note that the sufficient condition can be checked by verified numerical computations.
متن کامل